Crystallographic and biochemical studies of DivK reveal novel features of an essential response regulator in Caulobacter crescentus.
نویسندگان
چکیده
DivK is an essential response regulator in the Gram-negative bacterium Caulobacter crescentus and functions in a complex phosphorelay system that precisely controls the sequence of developmental events during the cell division cycle. Structure determinations of this single domain response regulator at different pH values demonstrated that the five-stranded alpha/beta fold of the DivK protein is fully defined only at acidic pH. The crystal structures of the apoprotein and of metal-bound DivK complexes at higher pH values revealed a synergistic pH- and cation binding-induced flexibility of the beta4-alpha4 loop and of the alpha4 helix. This motion increases the solvent accessibility of the single cysteine residue in the protein. Solution state studies demonstrated a 200-fold pH-dependent increase in the affinity of manganese for the protein between pH 6.0 and 8.5 that seems to involve deprotonation of an acido-basic couple. Taken together, these results suggest that flexibility of critical regions of the protein, ionization of the cysteine 99 residue and improved K(D) values for the catalytic metal ion are coupled events. We propose that the molecular events observed in the isolated protein may be required for DivK activation and that they may be achieved in vivo through the specific protein-protein interactions between the response regulator and its cognate kinases.
منابع مشابه
An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter.
Cell differentiation and division in Caulobacter crescentus are regulated by a signal transduction pathway mediated by the histidine kinase DivJ and the essential response regulator DivK. Here we report genetic and biochemical evidence that the DivJ and DivK proteins function to control the activity of CtrA, a response regulator required for multiple cell cycle events, including flagellum biosy...
متن کاملThe DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti.
Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phospho...
متن کاملDivL performs critical cell cycle functions in Caulobacter crescentus independent of kinase activity.
The Caulobacter cell cycle is regulated by a network of two-component signal transduction proteins. Phosphorylation and stability of the master transcriptional regulator CtrA are controlled by the CckA-ChpT phosphorelay, and CckA activity is modulated by another response regulator, DivK. In a screen to identify suppressors of the cold-sensitive divK341 mutant, we found point mutations in the es...
متن کاملDynamic localization of a cytoplasmic signal transduction response regulator controls morphogenesis during the Caulobacter cell cycle.
We present evidence that a bacterial signal transduction cascade that couples morphogenesis with cell cycle progression is regulated by dynamic localization of its components. Previous studies have implicated two histidine kinases, DivJ and PleC, and the response regulator, DivK, in the regulation of morphogenesis in the dimorphic bacterium Caulobacter crescentus. Here, we show that the cytopla...
متن کاملA dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus.
Cellular asymmetry is critical to metazoan development and the life cycle of many microbes. In Caulobacter, cell cycle progression and the formation of asymmetric daughter cells depend on the polarly-localized histidine kinase CckA. How CckA is regulated and why activity depends on localization are unknown. Here, we demonstrate that the unorthodox kinase DivL promotes CckA activity and that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 44 شماره
صفحات -
تاریخ انتشار 2002